Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis[4-(2-pyridylmethyleneamino)phenyl] ether

Ana Tesouro Vallina and Helen Stoeckli-Evans*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, Case Postale 2, CH-2007 Neuchâtel, Switzerland
Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 5 January 2001
Accepted 15 January 2001

The title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$, is a bis-bidentate Schiff base ligand exhibiting pseudo- C_{2} symmetry. The molecule is twisted about the central ether linkage and exhibits an imine E configuration. In the crystal, the molecules are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The processes by which transition metals and ligands spontaneously react to form a wide diversity of three-dimensional structural motifs are themes of intense current interest. The design of building blocks for self-assembly processes is the starting point for achieving new three-dimensional structures (Williams et al., 1992; Lehn, 1995; Constable, 1996). Bis[4-(2-pyridylmethyleneamino)phenyl] ether, (I), is one such compound designed as a multidentate ligand for coordination with transition metals. Such ligands are sufficiently flexible to twist about the central O atom ($\mathrm{or}-\mathrm{CH}_{2}-$ bridge), but are not flexible enough to bend within themselves in order to coordinate all four donor atoms to the same metal atom. Cheng et al. (2000) and Tesouro Vallina \& Stoeckli-Evans (1999) have shown that both triple and double binuclear helices can be
formed with (I). Recently, the structure of an Ag^{I} zigzag coordination polymer with (I) has been published (Tesouro Vallina \& Stoeckli-Evans, 2001). Similar ligands with a $-\mathrm{CH}_{2}$ - central linkage have already been shown to form double and triple binuclear helices (Hannon et al., 1997; Hannon, Bunce et al., 1999; Hannon, Painting \& Alcock, 1999; Yoshida \& Ichikawa, 1997; Yoshida et al., 2000). Zacharias et al. (1995) studied the catalytic activity of some metal complexes of ligand (I).

(I)

Ligand (I) possesses pseudo-twofold symmetry, with the twofold axis running through the central O atom, and exhibits an imine E configuration (Fig. 1). The conformations of the two halves of the molecule differ considerably. One moiety, involving pyridine ring N4/C20-C24 and benzene ring C13C 18 , is almost flat with a dihedral angle of 10.77 (8) ${ }^{\circ}$ between the rings. In the second moiety, the pyridine ring N1/C1-C5 and benzene ring C7-C12 are inclined with respect to one another by $46.35(5)^{\circ}$. The pyridine-imine system is almost planar within the two moieties. The torsion angles $\mathrm{N} 1-\mathrm{C} 5-$ $\mathrm{C} 6-\mathrm{N} 2$ and $\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$ are 178.3 (1) and $173.3(1)^{\circ}$, respectively, whereas torsion angles $\mathrm{N} 3-\mathrm{C} 19-\mathrm{C} 20-\mathrm{N} 4$ and $\mathrm{C} 16-\mathrm{N} 3-\mathrm{C} 19-\mathrm{C} 20$ are 171.0 (1) and -177.7 (1) ${ }^{\circ}$, respectively. This is consistent with the presence of a π-conjugated system, only interrupted by the central O atom, although bond-length alternation is always observed [the average $\mathrm{C}=\mathrm{N}$ bond distance of $1.263(1)^{\circ}$ is indicative of double-bond character]. These characteristics are in agreement with similar structures (Orr et al., 1992; Drew et al., 1995).

In the crystal packing (Fig. 2), the pyridine N atoms are involved in weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions with symmetry-related molecules. The shortest interactions are found for $\mathrm{C} 18 \cdots \mathrm{~N} 4^{\mathrm{i}}$ and $\mathrm{C} 21 \cdots \mathrm{~N} 1^{\mathrm{ii}}$ with distances of 3.527 (2) and 3.405 (2) \AA, respectively. The more planar moieties of symmetry-related molecules are also considerably overlapped. A separation of ca $3.75 \AA$ was found between the best plane

Figure 1
The structure of (I) showing the numbering scheme and displacement ellipsoids at the 50% probability level.
through the benzene ring $(\mathrm{C} 13-\mathrm{C} 18)$ and the pyridine ring (N4/C20-C24; symmetry code: $2-x,-y, 2-z$), indicating weak π-stacking in the crystal.

Figure 2
The crystal packing of (I) showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions as dotted lines.

Experimental

Ligand (I) was prepared by the Schiff base condensation of bis(4aminophenyl) ether and 2-pyridinecarbaldehyde (Tesouro Vallina \& Stoeckli-Evans, 1999; Cheng et al., 2000). X-ray quality crystals were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with hexane at room temperature.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	$D_{x}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=378.42$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 5000
$a=12.3403(8) \AA$	reflections
$b=18.3849(17) \AA$	$\theta=1.99-25.89^{\circ}$
$c=8.5868(6) \AA$	$\mu=0.082 \mathrm{~mm}^{-1}$
$\beta=91.958(8)^{\circ}$	$T=153(2) \mathrm{K}$
$V=1947.0(3) \AA^{3}$	Block, yellow
$Z=4$	$0.55 \times 0.50 \times 0.35 \mathrm{~mm}$

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C18-H18 $\cdots \mathrm{N} 4^{\mathrm{i}}$	$0.966(17)$	$2.575(17)$	$3.5265(18)$	$168.1(13)$
C21-H21 N^{ii}	$1.010(16)$	$2.550(17)$	$3.4046(19)$	$142.2(12)$

[^0]
Data collection

Stoe IPDS diffractometer $\quad R_{\text {int }}=0.032$
φ oscillation scans
14238 measured reflections
3716 independent reflections
2904 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& \theta_{\max }=25.89^{\circ} \\
& h=-14 \rightarrow 15 \\
& k=-22 \rightarrow 22
\end{aligned}
$$

$$
l=-10 \rightarrow 10
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.015$
3716 reflections
334 parameters
All H -atom parameters refined

The H atoms were located from Fourier difference maps and refined isotropically $[\mathrm{C}-\mathrm{H}=0.93$ (2) -1.02 (2) \AA].

Data collection: EXPOSE (Stoe \& Cie, 2000); cell refinement: CELL (Stoe \& Cie, 2000); data reduction: INTEGRATE (Stoe \& Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1445). Services for accessing these data are described at the back of the journal.

References

Cheng, H., Chun-Ying, D., Chen-Jie, F. \& Qing-Jin, M. (2000). J. Chem. Soc. Dalton Trans. pp. 2419-2424.
Constable, E. C. (1996). Comprehensive Supramolecular Chemistry, Vol. 9. Oxford: Pergamon Press.
Drew, M. G. B., Felix, V., McKee, V., Morgan, G. \& Nelson, J. (1995). Supramolecular Chemistry, 5, 281-287.
Hannon, M. J., Bunce, S., Clarke, A. J. \& Alcock, N. W. (1999). Angew. Chem. Int. Ed. Engl. 38, 1277-1278.
Hannon, M. J., Painting, C. L. \& Alcock, N. W. (1999). Chem. Commun. pp. 2023-2024.
Hannon, M. J., Painting, C. L., Jackson, A., Hamblin, J. \& Errington, W. (1997). Chem. Commun. pp. 1807-1808.
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: VCH Verlagsgesellschaft.
Or, L. B. Jr, Parsons, E. J. \& Perrington, W. T. (1992). Acta Cryst. C48, 20422043.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2000). Stoe IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (1999). Chimia, 53, 342.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (2001). Acta Cryst. E57, m59-61.
Williams, A. F., Floriani, C. \& Merbach, A. E. (1992). Perspectives in Coordination Chemistry. Weinheim, Germany: VCH Verlagsgesellschaft.
Yoshida, N. \& Ichikawa, K. (1997). Chem. Commun. pp. 1091-1092.
Yoshida, N., Ichikawa, K. \& Shiro, M. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 17-26.
Zacharias, P. S., Srinivas, B. \& Annetha, H. (1995). Proc. Indian Acad. Sci. Chem. Sci. 107, 297-304.

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0555 P)^{2}\right. \\
& +0.1419 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}
\end{aligned}
$$

[^0]: Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $1-x,-y, 1-z$.

