Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis[4-(2-pyridylmethyleneamino)phenyl] ether

Ana Tesouro Vallina and Helen Stoeckli-Evans*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, Case Postale 2, CH-2007 Neuchâtel, Switzerland Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 5 January 2001 Accepted 15 January 2001

The title compound, $C_{24}H_{18}N_4O$, is a bis-bidentate Schiff base ligand exhibiting pseudo- C_2 symmetry. The molecule is twisted about the central ether linkage and exhibits an imine *E* configuration. In the crystal, the molecules are linked by weak intermolecular $C-H \cdots N$ hydrogen bonds.

Comment

The processes by which transition metals and ligands spontaneously react to form a wide diversity of three-dimensional structural motifs are themes of intense current interest. The design of building blocks for self-assembly processes is the starting point for achieving new three-dimensional structures (Williams *et al.*, 1992; Lehn, 1995; Constable, 1996). Bis[4-(2-pyridylmethyleneamino)phenyl] ether, (I), is one such compound designed as a multidentate ligand for coordination with transition metals. Such ligands are sufficiently flexible to twist about the central O atom (or $-CH_2$ - bridge), but are not flexible enough to bend within themselves in order to coordinate all four donor atoms to the same metal atom. Cheng *et al.* (2000) and Tesouro Vallina & Stoeckli-Evans (1999) have shown that both triple and double binuclear helices can be formed with (I). Recently, the structure of an Ag^{I} zigzag coordination polymer with (I) has been published (Tesouro Vallina & Stoeckli-Evans, 2001). Similar ligands with a $-CH_2-$ central linkage have already been shown to form double and triple binuclear helices (Hannon *et al.*, 1997; Hannon, Bunce *et al.*, 1999; Hannon, Painting & Alcock, 1999; Yoshida & Ichikawa, 1997; Yoshida *et al.*, 2000). Zacharias *et al.* (1995) studied the catalytic activity of some metal complexes of ligand (I).

Ligand (I) possesses pseudo-twofold symmetry, with the twofold axis running through the central O atom, and exhibits an imine E configuration (Fig. 1). The conformations of the two halves of the molecule differ considerably. One moiety, involving pyridine ring N4/C20-C24 and benzene ring C13-C18, is almost flat with a dihedral angle of $10.77 (8)^{\circ}$ between the rings. In the second moiety, the pyridine ring N1/C1-C5 and benzene ring C7-C12 are inclined with respect to one another by 46.35 (5)°. The pyridine-imine system is almost planar within the two moieties. The torsion angles N1-C5-C6-N2 and C7-N2-C6-C5 are 178.3 (1) and 173.3 (1)°, respectively, whereas torsion angles N3-C19-C20-N4 and C16-N3-C19-C20 are 171.0 (1) and -177.7 (1)°, respectively. This is consistent with the presence of a π -conjugated system, only interrupted by the central O atom, although bond-length alternation is always observed [the average C=N bond distance of $1.263 (1)^{\circ}$ is indicative of double-bond character]. These characteristics are in agreement with similar structures (Orr et al., 1992; Drew et al., 1995).

In the crystal packing (Fig. 2), the pyridine N atoms are involved in weak intermolecular C-H···N interactions with symmetry-related molecules. The shortest interactions are found for C18···N4ⁱ and C21···N1ⁱⁱ with distances of 3.527 (2) and 3.405 (2) Å, respectively. The more planar moieties of symmetry-related molecules are also considerably overlapped. A separation of *ca* 3.75 Å was found between the best plane

489

Figure 1 The structure of (I) showing the numbering scheme and displacement ellipsoids at the 50% probability level.

through the benzene ring (C13–C18) and the pyridine ring (N4/C20–C24; symmetry code: 2 - x, -y, 2 - z), indicating weak π -stacking in the crystal.

Figure 2

The crystal packing of (I) showing the C-H···N interactions as dotted lines.

Experimental

Ligand (I) was prepared by the Schiff base condensation of bis(4aminophenyl) ether and 2-pyridinecarbaldehyde (Tesouro Vallina & Stoeckli-Evans, 1999; Cheng *et al.*, 2000). X-ray quality crystals were obtained from a CH_2Cl_2 solution layered with hexane at room temperature.

Crystal data

$C_{24}H_{18}N_4O$	$D_x = 1.291 \text{ Mg m}^{-3}$
$M_r = 378.42$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 5000
a = 12.3403 (8) Å	reflections
b = 18.3849 (17) Å	$\theta = 1.99-25.89^{\circ}$
c = 8.5868 (6) Å	$\mu = 0.082 \text{ mm}^{-1}$
$\beta = 91.958 \ (8)^{\circ}$	T = 153 (2) K
V = 1947.0 (3) Å ³	Block, yellow
Z = 4	$0.55 \times 0.50 \times 0.35$ mm

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} C18{-}H18{\cdots}N4^{i}\\ C21{-}H21{\cdots}N1^{ii} \end{array}$	0.966 (17)	2.575 (17)	3.5265 (18)	168.1 (13)
	1.010 (16)	2.550 (17)	3.4046 (19)	142.2 (12)

Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 1 - x, -y, 1 - z.

Data collection

Stoe IPDS diffractometer	$R_{\rm int} = 0.032$
φ oscillation scans	$\theta_{\rm max} = 25.89^{\circ}$
14238 measured reflections	$h = -14 \rightarrow 15$
3716 independent reflections	$k = -22 \rightarrow 22$
2904 reflections with $I > 2\sigma(I)$	$l = -10 \rightarrow 10$

Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.1419P]
$wR(F^2) = 0.094$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.015	$(\Delta/\sigma)_{\rm max} = 0.001$
3716 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters refined	

The H atoms were located from Fourier difference maps and refined isotropically [C-H = 0.93 (2)-1.02 (2) Å].

Data collection: *EXPOSE* (Stoe & Cie, 2000); cell refinement: *CELL* (Stoe & Cie, 2000); data reduction: *INTEGRATE* (Stoe & Cie, 2000); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON*99 (Spek, 1990); software used to prepare material for publication: *SHELXL*97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1445). Services for accessing these data are described at the back of the journal.

References

- Cheng, H., Chun-Ying, D., Chen-Jie, F. & Qing-Jin, M. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.
- Constable, E. C. (1996). Comprehensive Supramolecular Chemistry, Vol. 9. Oxford: Pergamon Press.
- Drew, M. G. B., Felix, V., McKee, V., Morgan, G. & Nelson, J. (1995). Supramolecular Chemistry, 5, 281–287.
- Hannon, M. J., Bunce, S., Clarke, A. J. & Alcock, N. W. (1999). Angew. Chem. Int. Ed. Engl. 38, 1277–1278.
- Hannon, M. J., Painting, C. L. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.
- Hannon, M. J., Painting, C. L., Jackson, A., Hamblin, J. & Errington, W. (1997). *Chem. Commun.* pp. 1807–1808.

Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: VCH Verlagsgesellschaft.

- Or, L. B. Jr, Parsons, E. J. & Perrington, W. T. (1992). Acta Cryst. C48, 2042– 2043.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2000). Stoe IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.

- Tesouro Vallina, A. & Stoeckli-Evans, H. (1999). Chimia, 53, 342.
- Tesouro Vallina, A. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m59-61.
- Williams, A. F., Floriani, C. & Merbach, A. E. (1992). Perspectives in Coordination Chemistry. Weinheim, Germany: VCH Verlagsgesellschaft.
- Yoshida, N. & Ichikawa, K. (1997). Chem. Commun. pp. 1091–1092.

Yoshida, N., Ichikawa, K. & Shiro, M. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 17–26.

Zacharias, P. S., Srinivas, B. & Annetha, H. (1995). Proc. Indian Acad. Sci. Chem. Sci. 107, 297–304.